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L Estimating mapped-plot forest attributes with
ratios of means

S.J. Zarnoch and W.A. Bechtold

Abstract:  The mapped-plot  design uti l ized by the U.S.  Department of  Agriculture (USDA) Forest  Inventory and Anal-
ysis  and the National  Forest  Health Monitoring Programs is  described.  Data from 2458 forested mapped plots  systemat-
ically spread across 25 states reveal  that  35% straddle mult iple condit ions.  The rat io-of-means est imator is  developed
as a method to obtain est imates of  forest  at t r ibutes from mapped plots ,  along with measures of  variabil i ty useful  for
constructing confidence intervals .  Basic inventory stat is t ics  from North and South Carolina were examined to see if
these data sat isf ied the condit ions necessary to qualify the rat io of  means as the best  l inear unbiased est imator.  I t  is
shown that  the rat io-of-means est imator is  equivalent  to the Horwitz-Thompson, the mean-of-rat ios,  and the weighted-
mean-of-rat ios est imators under certain si tuat ions.

R&urn6  :  Les auteurs dtcrivent le disposit if  de parcelles cartographiees utilid  par les programmes d’analyse et
d’inventaire forest ier  et  de suivi  national  de 1’Ctat  de Sante  des for&s  du DCpartement  de l’agriculture des Btats-Unis.
Les donnees  provenant de 2458 parcelles cartographikes  en for& et reparties  dans 25 Btats  montrent  que 35% des par-
celles  chevauchent  des condit ions mult iples.  L’est imateur du rat io des moyennes est  la  methode  qui  a  ttC  developpee
pour obtenir  un est imk des caracteristiques  de la for&  a partir  des parcelles cartographiees de m&me que des mesures
de variabilite  ut i les pour construire des intervalles de confiance.  Les stat ist iques de base de l’ inventaire de la Caroline
du Nord et  du Sud ont  CtC examinees  pour verifier si  ces donnees  rencontrent  les  condit ions necessaires  pour faire du
rat io des moyennes le  meil leur est imateur lineaire  non biais t .  Les resultats  demontrent  que l’est imateur du rat io des
moyennes est  Cquivalent  B l ’est imateur de Horwitz-Thompson, B celui  de la moyenne des rat ios et  B l ’est imateur pon-
d&e de la  moyenne des rat ios dans certaines condit ions.

[Traduit par la Redaction1

Introduction
The increased demand for forest products and the recent

interest in the potential effects of atmospheric deposition
and global warming on forest resources have emphasized the
need for accurate forest inventories and forest health moni-
toring. To address these issues, the U.S. Department of Agri-
culture (USDA) Forest Inventory and Analysis (FIA) and
the National Forest Health Monitoring (FHM) Programs use
mapped-plot designs for extensive forest inventories (Hahn
et al. 1995). Since these data are used by other government
organizations, industry, and academia, it is imperative that
the sampling methodology be clearly defined with appropri-
ate estimators and measures of precision.

FHM inventory data to determine if the assumptions re-
quired for using the ROM estimator are satisfied for some
basic inventory statistics, and discuss the relationship of the
ROM estimator to alternative estimators.

Mapped-plot design

Scott and Bechtold (1995) recommend using the ratio of
means (ROM) estimator to calculate inventory attributes
from mapped plots. However, complications occur because
each plot is subsampled with two different-sized plots for
different-sized vegetation. Other complexities are caused by
varying plot sizes resulting from poststratification of the
data.

The objectives of this paper are to further develop the
ROM estimator for processing mapped-plot data, utilize

FIA and FHM inventories are comprised of a series of
fixed-size ground plots from which measurements of forest
attributes are obtained. FIA uses a design that is a combina-
tion of random and systematically located plots. FHM uti-
lizes a strictly systematic sample where each plot is located
on a hexagonal grid. Both programs use a ground plot that
consists of a cluster of four 0.0166-ha  fixed-area circular
subplots (7.32-m radius) spaced 36.6 m apart (Fig. 1). Each
subplot includes a 0.00 13-ha  fixed-area circular microplot
(2.07-m radius). Trees at least 12.7-cm DBH are measured
on the subplots, while saplings between 2.54-  and 12.6-cm
DBH are sampled on the microplots. Across each cluster, the
four subplots encompass a total of 0.0665 ha, and the
microplots cover 0.0053 ha.
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Cluster designs are preferred for extensive inventories be-
cause they are more cost effective than single-point plots of
similar size since they reduce the between-plot variation
(Scott et al. 1983; Scott 1993). For all conventional inven-
tory applications, data are summed across the four subplots
and across the four microplots, and the cluster is processed
as a single plot consisting of one combined subplot and one
combined microplot.
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Fig. 1. Mapped-plot configuration.
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Mapped plots are based on the concept of “condition
classes,” which are assigned by field crews to classify land
area into homogeneous groups. Plots are characterized by
several predetermined discrete variables such as land use
(forest versus nonforest), forest type, and stand origin
(planted versus natural). Plots that are not homogeneous are
subdivided into multiple condition classes. Survey crews as-
sign an arbitrary number (usually 1) to the first condition
class encountered on a plot. This number is defined by the
series of condition-class variables attached to it. Additional
condition classes are identified if there is a distinct change
in any of the condition-class variables on the plot. When
multiple condition classes occur on a particular subplot or
microplot, field crews map the boundaries between condi-
tions with azimuth readings (Scott and Bechtold 1995). Sub-
plot and microplot areas in each condition class are
subsequently computed for each plot when the data are pro-
cessed. All trees tallied are assigned to the condition classes
in which they are located. Since nonforest areas are not part
of the FIA and FHM populations of interest, no tree data are
recorded for nonforest land uses.

At first glance, an unwieldy number of condition-class
permutations seem likely at the regional scale, especially
since condition classes from the same data set must be pro-
cessed in different combinations from one inventory sum-
mary table to the next (depending on the attribute of
interest). However, most plots have only 1 or 2 condition

classes, and data summarizations are easily managed with
indicator functions, as will be demonstrated.

Ratio-of-means estimators
This section presents the ratio-of-means estimator and

several variants. Much of this originates from Cochran
(1977) and serves as reference material for the next section,
which specifically applies ROM methodology to forest in-
ventories using the mapped-plot design.

The attributes of interest in a forest inventory cover a
broad spectrum. They might include estimates of average
numbers of trees per hectare, total inventory volume in a re-
gion, mean quadratic DBH, mean number of conks per tree,
proportions of forest area by forest type, etc. All of these es-
timates involve ratios (y/x) where y is some attribute of in-
terest and x is some correlated auxiliary variable (usually an
area or tree total). Several alternative estimators are possi-
ble, but the ROM estimator is the best linear unbiased esti-
mator (BLUE) under the following conditions (Cochran
1977, sect. 6.7):
(1) the relationship between yi and Xi is linear through the

origin and
(2) the variance of yi is proportional to xi.
If only condition 1 is met, then the ROM estimator is still
unbiased (Ek 1971) but is no longer BLUE (Brewer 1963;
Royal1 1970).
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In addition, as is the case with all other estimators, the
sample size should be sufficiently large to ensure a reliable
estimate. Hence, Cochran (1977, sects. 6.3 and 6.8) recom-
mends that the number of observations be at least 30 and
large enough so that the coefficients of variation of 7 and X
are both less than 10%.

Cochran (1977, sect. 6.2) defines the ROM estimator as

iyi y
[]I  j&$L=-

CXi  ’
i=l

where yi is the variable of interest on plot i, xi is an auxiliary
variable on plot i that is correlated with yi, and n represents
the number of plots selected from the population by simple
random sampling. Although this estimator is known to be bi-
ased and positively skewed, as the sample size increases
above 30 the bias becomes negligible and the distribution
approaches normality. In a simulation study, Ek (1971)
found that the bias of several ratio of means estimators of
forestry attributes was less than 3.9% when the sample size
was only four.

Cochran (1977, sect. 6.4, eq. 6.13) specifies the variance
of the ROM estimator as
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or, in an alternate form,
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where S; and S,” are the typical sample variances of y and x,
respectively, and S,,  is their covariance. Note that the finite
population correction has been ignored (as it will be
throughout this paper) since the sampling fraction is un-
known and negligible in most forest inventories. If the sam-
ple size is at least 30 and the coefficients of variation of y
and X are both less than lo%,  then confidence intervals may
be constructed in the usual way as

[41 k III  z(P(kp5

where z is the normal deviate at the desired confidence level.
If these conditions are not met, alternative but more complex
methods may be used (Fieller 1932; Paulson 1942; James et
al. 1974).

In some situations (to be addressed in more detail later) it
is desirable to formulate an estimator that is the sum of two
correlated ROM estimators. This occurs when the estimator
is derived from trees on both microplots and subplots. In this
case, the estimator is defined as

[51 F=i.+k

where a is the ratio-of-means estimator for the subplot and
& is the ratio-of-means estimator for the microplot. An alter-
native to eq. 5 could be formulated by first combining the
subplot and microplot data on each plot and then calculating
a ROM estimator from the combined data, but we rejected
this approach for a couple of reasons. First, depending on
the condition classes of interest, the ratio of subplot area to
microplot area may not be constant from plot to plot. Simply
expanding microplot data to the subplot level creates an in-
verse relationship between a microplot’s size and the weight
it receives when expanded. In effect, all microplots would
lose their size identity and contribute equally to the variance.
Secondly, there is also the possibility that a condition 10;
cated on a subplot is not sampled by a microplot, causing R
and & to be based on a different number of plots.

The estimated variance of eq. 5, which includes the
covariance between the two estimators, is

161 Q(2)  = f(2)  + @?j + 2QR kj
where Cochran (1977, sect. 6.18, eq. 6.90) defines the
covariance term as

For other situations (to be addressed later), useful estima-
tors can be formed as ratios of two correlated ROM estima-
tors. This estimator is defined as

PI

with estimated variance (Cochran 1977, Sec. 6.19, eq. 6.95)

where all quantities are as previously defined and

[lo] e(&& = C($ +i&$ +&)

Estimating means of forest attributes
So that classical sampling methodology can more easily

be applied, it is assumed the sample of plots is a simple ran-
dom sample where the sampling unit is the plot, which con-
sists of one combined subplot and one combined microplot.
When the sample is partially systematic (FIA) or totally sys-
tematic (FHM) this assumption may be challenged owing to
the spatial pattern of trees across the forest landscape. How-
ever, it is a reasonable assumption for most forest invento-
ries that systematic sampling is approximately equivalent to
simple random sampling. Milne (1959),  who studied spatial
periodicity in forest populations, states that “the danger to
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centric systematic sampling from unsuspecting periodicity is
so small as to be scarcely worth a thought.”

Separate subplot or microplot estimates
In some cases the attribute of interest can be obtained

either from the microplot data or from the subplot data.
In other situations it is necessary to combine subplot and
microplot data. An example of the former would be analyses
that require only trees 12.7-cm DBH and larger; an example
of the latter would be analyses involving trees 2.54-cm  DBH
and larger. The application of the ROM estimator to com-
bined estimates is slightly more complex, so the separate
case is addressed first.

For convenience, all attributes commonly estimated from
inventory data can be grouped into three general cases:
(1) per-hectare-level attributes2 (average trees per hectare,

basal area per hectare, etc.),
(2) tree-level attributes (average DBH, number of conks

per tree, etc.), and
(3) stand-level attributes (average stand age, percent stock-

ing, etc.).
The ROM estimator is appropriate for attributes in all three
categories provided yij and Xij  as described below are prop-
erly defined. For a given  plot i let

yij  = the value of the y variable of interest on
plot i and condition class j

xij = the value of the x variable of interest on
plot i and condition class j

ci  = the number of condition classes on plot i

IV  = 1 if condition class j on plot i is of interest or

= 0 if condition class j on plot i is not of
interest

n = number of plots containing at least one
condition class of interest.

Then, the indicator function Zij is used to obtain the values
for yi and Xi on plot i as

yi  =  tl,,yy

j=l

a n d

Examples of how yV  and xij are defined for each of the
three general cases follow:

Case 1. Per-hectare-level attribute (e.g., average basal area
per hectare)

yij  = sum of the basal areas of all trees tallied
on plot i in condition class j

xij = area of plot i in condition class j

Case 2. Tree-level attribute (e.g., average DBH)

yij  = sum of the DBH’s  for all trees tallied on
plot i in condition class j

xij = the number of trees tallied on plot i in
condition class j

Case 3. Stand-level attribute (e.g., average stand age)

yij  = (subplot area of plot i in condition class j)
x (stand age of plot i in condition class j)

xii = subplot area of plot i in condition class j

Note that case 3 is similar to a traditional weighted mean
where the weight is the area of plot i in condition class j
(i.e., the xv).  In fact, the mean estimates will be identical,
but the variances will differ, since the traditional weighted
mean treats the weights as constants when calculating the
variance, while the ratio of means correctly considers them
as variables.

It is also interesting to observe that per-hectare-level esti-
mates (case 1) can be formulated with the stand-level ap-
proach (case 3) if yij is redefined. For instance, the basal
area example from case 1 above conforms to case 3 if yU  is
redefined as

yij  = (area of plot i in condition class j) x (basal
area per hectare of plot i in condition class j)

= (Xii>  x (basal area on plot i and condition
class j/x,)

= basal area on plot i and condition class j.

Thus, the yij’s  are identical for both approaches. The per-
hectare-level and stand-level cases are equivalent if yij is
properly formulated, hence the user may select the most in-
tuitive method.

Combined estimates
When estimates are needed for attributes that require data

from both the microplot and subplot (e.g., when an estimate
is based on trees 2.54-cm  DBH or larger), three different ap-
proaches are recommended depending on whether the attrib-
ute is case 1, case 2, or case 3.

To combine per-hectare-level (case 1) estimates from the
subplots and microplots, the individual esemates  are simply
added as specified in eq. 5, where R and K are the ratio-of-
means estimates for the subplot and microplot components,
respectively. The variance can then be obtained from eq  6,
where Xi and yi are data from the subplots, and Xi  and yi  are
data from the microplots.

In contrast with per-hectare attributes, estimators for tree-
level attributes (case 2) cannot be obtained by combining
subplot and microplot data. For instance, the average DBH
of all stems is not mean sapling DBH plus mean tree DBH.
The correct result can be obtained by creating two additive
combined-ratio estimates, one that expresses the tree-level

2Note  that the per hectare-level- values yield population totals (total number of trees or basal area in a region) when multiplied by the appro-
priate population area. This is addressed in more detail later.
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attribute on a per-hectare basis @ and the other to estimate
trees per hectare &. Then a ratio of these estimates is for-
mulated as in eq. 8 with estimated variance obtained from
eq. 9.

Stand-level (case 3) attributes produced from combined
microplot and subplot data pose more difficulty. Such vari-
ables usually involve some type of index that requires the
microplot and subplot data to be combined before the index
can be produced, so it would be inappropriate to add or av-
erage subplot and microplot indices that are computed sepa-
rately. Examples might include species diversity index, stand
density index, or stocking.

Scott and Bechtold (1995) recommend expanding the micro-
plot data used in the calculation of such indices by a weight
defined as the subplot/microplot  area ratio. In effect, this
puts the microplot data on the same basis as the subplot for
each condition of interest, and yields a plot value defined as

The mean of zi and its variance can then be obtained in the
same manner as a separate stand-level estimator (e.g., stand
age), but this estimator has some noteworthy disadvantages.
First, the size of each subplot and microplot depends on the
condition classes of interest as determined by the indicator
function IV, so the weights can vary from plot to plot. This
inflates the variance, because the smallest microplots (which
are usually the most variable) receive the most weight since
their subplot/microplot  ratios are the largest. Secondly, it
does not function well for plots where the condition class of
interest is present on the subplot, but not the microplot. In
this case subplots containing valuable data will be discarded
whenever corresponding microplots have no data.

Estimating area
Proper formulation of proportions involving area esti-

mates is crucial to processing mapped-plot data. All area es-
timates must conform to a specific base line area, which is
defined by the estimation problem at hand. For example, the
proportion of loblolly pine forest types in the geographic
area of interest might be the ratio of loblolly pine area to
“total” land area (forest plus nonforest), or it might be the
ratio of loblolly pine to “forest” land area in the region of
interest.

The composition of the base line area thus defines the
condition class that becomes the denominator of all ratios
involving area. An estimator for such a proportion is

i=l

where & = ratio-of-means estimator for the proportion of
area in the condition classes of interest with respect to the
base line, Xi = area of plot i that is in the condition classes of
interest, xBi = area of plot i which is in the base line condi-
tion class, and nE = the number of plots in the base line con-
dition class.

Can. J. For. Res. Vol. 30, 2000

Note that the xi and XBi must be obtained from the plot
data by use of two different indicator functions, each defined
by their respective condition classes. The sample variance of
PC  would be obtained from an equation analogous to eqs. 2
or 3.

If the total area in the base line is known, then an estimate
of total area in the condition class of interest is

[12] & = A&

where & is the total area in the condition classes of interest
and As is the total area (known) in the base line. An estimate
of the variance is

[13] li<& = A; v(&)

If AB is not known, but estimated from a sample that is in-
dependent of that used to obtain PC, then

[14] & = A&c

and based on Kish (1965)

[ 151 lqi& = A; I@.)  + P2 V&i,>

where @&i,>  is obtained by whatever method is appropriate
for the independent sample.

Expanding mean per-hectare estimates to
population totals

One of the most basic objectives of a forest survey is to
estimate population totals (e.g., total basal area or volume in
a condition class of interest for a given geographic unit). To
obtain population totals, the ROM per-hectare-level estima-
tor (Z?)  must be multiplied by the total area in the condition
class of interest (A,-) in the geographic unit. There are sev-
eral ways to obtain this estimate, depending on the level of
information available. A, may be known, it may come from
an independent estimate such as aerial photography, or it
may be estimated directly from the mapped-plot data.

Kish (1965, page 211) recommends the following general
formula to calculate the variance of estimators resulting
from the product of two random variables (X and Y):

[ 161 V(Xy>  = X2V(Y)  + Y,V(X) + 2XYC(X, Y)

Depending on the source of A,, some of the terms in eq. 16
may drop out as discussed below.

A, is known
In the ideal situation, A,  is known without error, resulting

in an estimator with maximum precision. This type of infor-
mation may be available for private landowners with small,
intensely managed forests. When A, is known, the separate
population total estimator is defined as

[17] ? = AJ?

Since A, is known, V(A,-)  = 0, and A, and a are not corre-
lated (C(A& = 0), so eq. 16 yields the variance

[18] l+) = Az;l@

When total estimates for a combined microplot and subplot
attribute are needed, fl is used instead of R.
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AC is estimated
Usually A, is not known, because the land area has not

been surveyed or there have been changes to A, over time
owing to ecological succession, natural disturbances, har-
vesting practices, etc. If & is estimated from a source inde-
pendent of the mapped plots (e.g., photography or satellite
imagery), then the separate population total estimator is

[19] P=&i

8 and the sample variance is

[ 201 ri< f) = i$ Q(k) + R2 f(&)
a Since there is an increase in uncertainty due to a lower level

of information, there is an increase in the variance of the
estimator. Again, for combined estimates, p is used instead
of a

As is known
If A, is not known, and no independent estimate is avail-

able, but some base line AB is known (e.g., total land area in
the region 0: interest), then the subp!ot3 data could be used
to estimate A, (eq. 12) along with R. The separate popula-
tion total estimator is then defined as

[21] f = A&l?  = &k

The sample va$ance  must incorporate the covariance be-
tween A, and R, and is thus derived from eq. 16 as

[22] P(f)  = /4$(k)  + kV(&) + 2&crz&&,  I?)

This estimator may be more or less precise than the previous
one, depending on the precision of the A, estimates and the
covariance term. Note that the first population estimator
(eq. 17) is a special case of this estimator if As is equal to
A, (which implies that PC  = 1).

Although the variance eq. 22 could be computed from
previous techniques presented in this paper, the mathematics
are cumbersome. A simplification is possible if it is noted
that the estimator (eq. 21) can be written as

n, n

C”iCYi
~231  f =  ~~  ;rl i=,’

xxBiCxi
i=l i=l

where there are ns plots in the base line and II  plots in the
, condition class of interest which define the upper bounds for

the summations in eq. 23. Note that

iYi  =  2Yi
i=l i=l

and

~Xi  = ~Xi
i=l i=l

since yi and Xi are defined with respect to the condition class
of interest and, hence, the nB - IZ  plots not in the condition
class of interest have yi = 0 and Xi = 0. Thus, substituting
these relationships into eq. 23 and canceling terms, the esti-
mator becomes

$Yi
[24]  f=A,+= _ABRB

cxBi
i=l

where lis is defined as the ratio-of-means estimator with re-
spect to the base line using the xBi instead of the typical xi.
The variance is then obtained as

[25] p(f)  = A;l@J

where l@s) can be calculated in a fashion similar to eqs. 2
or 3. For combined estimates, individual estimates are com-
puted and summed, and the variance is computed in a fash-
ion analogous to eq. 6.

AB is estimated
Instead of estimating the area in each specific condition

class of interest A, as required for eq. 19, it may be advanta-
geous to derive an estimator that utilizes an estimate of the
area in some base line (AB),  such as the total area of forest in
the region of interest. This case would apply to FIA when
two-phasesampling is employed where total area of forest is
estimated from photography and ground plots are used to
partition the forest area. If AB is estimated from a source that
is independent of the mapped plots, then the separate popu-
lation total estimator is

[26] p  = &&

where $ is again defined as the ratio of means estimator
with respect to the base line, and the sample variance is

Tree expansion factors
For data storage and retrieval purposes it is sometimes

convenient to derive a tree weight (or expansion factor),
which is the amount that each individual sample tree con-
tributes to the estimate of the population total. With the
ROM estimator, the tree weights are constant with respect to
whatever base line is used to produce the total. If A, (or esti-
mated Ac) is used,*the tree weight is dependent on the condi-
tion class A, (or 4). From eq. 17, the expansion factor (E)
assigned to all trees in condition A, is

i=l

Estimated & is substituted for A, in the above when com-
puting the expansion factor associated with eq. 19.

3 Although it is possible to estimate area with the microplot data, the subplot data are recommended for this purpose since more area is
sampled.
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If A, (or &) is used, the tree weight is constant with re-
suect tothe base line A,, but independent of condition class.
From eq. 21 it appears that

xxi
i=l

which is condition class dependent. However, since & =
A&  and

~Xi

pc  =  i=l

EXSi
i=l

we have, upon substituting

E =

=

2!L
n

Cxi
i=l

-ALL

txBi
i=l

n

A& = AB

~Xi  ~Xi

i=l i=l

kxi  As
i=l ZZ-

~Xsi  iXi

i=I i=l

ixi
i=l

2nSi
i=l

which is condition class independent. Thus, when the
ground plots are used to estimate the area in a particular
condition from some base line, the tree expansion factor is a
constant for all condition classes within the specified base
line area A, (or AB).

Data analysis
FHM plot data were obtained for 25 states. All plots were

systematically located and mapped according to six condi-
tion-class variables: land use, forest type, stand size, stand
origin, past disturbance, and density class. Since variability
of plot size is one of the properties upon which the ROM es-
timator is dependent, distributions of plots with multiple
conditions were evaluated to determine if there is enough
forest fragmentation to justify an estimator that accommo-
dates variable plot sizes. A subset of these plots from North
Carolina and South Carolina were further checked to deter-
mine if the mapped inventory data met the prerequisites for
making the ROM a candidate for best linear unbiased esti-
mator.

Mapped-plot condition-class distribution
Data from 25 states show that 35% of all forested plots

(the population of interest for FHM and FIA) are less than
full size because they contain two or more condition classes
(Table 1). High percentages of partial plots underscore the
need for an estimator that accounts for varying plot size.
High percentages of plots with multiple conditions also sup-
port the general use of the mapped design, which properly
stratifies the excessive fragmentation observed in these data.

Under previous designs, fragmented plots would have been
“fuzzed” or “rotated” into a homogenous condition (Hahn et
al. 1995).

Best linear unbiased estimator
Trees per hectare is arguably the most basic inventory sta-

tistic produced by FIA. All other tree attributes (e.g., volume
per hectare, basal area per hectare, conks per hectare, etc.)
are likely to exhibit the same statistical properties as number
of trees per hectare. Data from North and South Carolina
were used to check this inventory attribute to see if it met
the conditions necessary for the ROM to be the best linear
unbiased estimator. The bivariates yi (subplot trees tallied)
and Xi (subplot area sampled) were obtained for each for-
ested condition class sampled in these two states. Several
descriptive statistics for yi and xi are shown in Table 2. Plot
size (yi)  ranged from small pieces of a total plot 0.0166 ha
(l/4 of a plot) to 0.0673 ha (a full plot). Scatterplots of the yi
and Xi values show a linear trend through the origin with the
variance approximately proportional to Xi (Figs. 2 and 3).
The linear relationship between the bivariates is strong, with
correlation coefficients of 0.38 and 0.31 for North Carolina
and South Carolina, respectively (Table 2). The assumptions
were further tested by fitting linear regressions to the xi and
yi and estimating the intercept and slope coefficients. For
both states, tests of the hypothesis that the intercept is equal
to zero could not be rejected, and the slope coefficients are
highly significant. In addition, the coefficients of variation
of the means are less than 10% in all cases (Table 2).

Discussion

Alternative estimators
Other estimators could be used with mapped-plot inven-

tory data, but these are usually inferior to the ROM when
the BLUE conditions are met. Compared with alternatives,
ROM also has several practical advantages, as discussed be-
low.

Honvitz-Thompson  (NT)
The HT estimator (Cochran 1977, Sec. 9A7, eq. 9A.37)  is

often used in forest inventory to estimate population totals.
Applied to the mapped design, the HT estimator is defined
a s

where $k = probability that tree k in condition class j on
plot i is selected by the sampling method, and mu  = number
of trees in condition class j on plot i.

An estimator for the true n$  could be defined as the pro-
portion of the total area sampled in condition class j. Thus,

where A is the area over which the estimated total is desired.
Given this. it can then be demonstrated that the HT estimator
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Table 1. Number of forested FHM plots, and the percent-
age with multiple condition classes, by State.

State

Alabama
California
Colorado
Connecticut

1 Georgia
Idaho
Illinois
Indiana

1 Maine
Maryland
Massachusettes
Michigan
Minnesota
New Hampshire
New Jersey
North Carolina
Oregon
Pennsylvania
South Carolina
Vermont
Virginia
Washington
West Virginia
Wisconsin
Wyoming

No. of % with multiple
forested plots conditions

131 46
190 26
150 39

1 1 27
162 43
142 24
40 58
37 38

127 18
45 44
22 32

130 42
256 36

34 47
1 3 54

111 45
195 20

80 34
81 35
24 25

101 44
136 27

77 40
95 46
68 26

Total 2458 35

Note: Forested plots have at least one condition class in a forest
land use.

is equivalent to the ROM estimator, since substituting this
value for k, yields

f = i=l j=l k=l
HI-  n c.

= * i=l_ A
n ARROM

~~Z,x,lA  &
i=l  j=l i=l

I Although these estimators are equivalent, several difficul-
ties are encountered when estimating the variance associated
with the HT estimator as applied to mapped plots. First, the

1 HT estimator defines individual trees as the sampling units
for the HT estimator, but the clustered nature of the trees is
not accounted for in the variance. Secondly, the selection
probabilities are estimated from the data and are not known,
fixed quantities. The application of a common rc  to all the
trees is questionable, because the random nature of 7[: does
not enter into the variance. Thirdly, the plot sizes themselves
are random variables, but HT ignores this source of varia-
tion. The ROM estimator circumvents these problems by uti-
lizing the plot as the basic sampling unit.

For all practical purposes such difficulties are eliminated
with the ROM estimator. Equation 1 is still defined when
any pair yi and Xi are both equal to zero. In addition, the esti-
mated variance (eqs. 2 and 3) is virtually unaltered by these
observations when n is greater than 30 (which is one of the
stated assumptions). This is easy to show by using eq. 3 and
noting that n(n - 1) is approximately equal to n* when n is
greater than 30. Thus, substituting n* for n(n - 1) in eq. 3
yields

Mean of ratios (MOR)

’=
l Iixi

2 ($Y?  +k2$x?  m2kiYixi)

i=l

The mean of ratios (MOR) estimator is often recom-
mended as an alternative to the ratio of means when the

Hence, l@  as written above is defined for Xi and yi equal
to zero, and n does not appear in the equation except as an

Table 2. Descriptive statistics and the linear relationship for the
x and y variables used to estimate trees per hectare from the
FHM plots in North Carolina and South Carolina.

(A) Descripive statistics for x and y variables

North Carolina

Statistic x v
- South Carolina

X Y

No. of plots
Mean
Minimum
Maximun
Standard deviation
Coefficient of variation
Coefficient of variation

of the mean

111 111 ‘81 81
0.0601 22.8 0.062 1 21.9
0.0168 0 0.0168 0
0.0673 73 0.0673 66
0.0135 14.8 0.0118 16.7
22.5 65.0 19.0 76.2
2.14 6.17 2.11 8.46

(B) Linear relationship between x and y

North Carolina

Correlation coefficient 0.38
Intercept estimate B, -1.88
P value for H,: B,  = 0 0.7544
Slope coefficient B, 411

South Carolina

0.31
-5.07
0.5986
435

P value for H,: B1  = 0 0.0001 0.0054

Note: x = subplot area sampled (ha); y  = number of subplot trees
tallied.

variance of yi is proportional to x’. However, the mean of
ratios often has a severe bias and Ek (1971) recommends
against using it in forest surveys. In addition, difficulties oc-
cur when no condition classes of interest occur on a given
plot. For example, consider estimating trees per hectare for
loblolly pine when some plots are located entirely in non-
loblolly pine types. In this case the observation yi/Xi would
be O/O, an undefined quantity. A further complication result-
ing from this scenario relates to sample size (n). It is not
clear if n should be reduced for such plots, thus creating a
problem that has a direct effect on the variance calculations.
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Fig. 2. Scatterplot of the number of trees (y) against plot size (x)
for the FHM mapped-plot  data from North Carolina.

North Carolina

Fig. 3. Scatterplot of the number of trees (y) against plot size (x)
for the FHM mapped-plot  data from South Carol ina.

South Carolina
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index of summation, which solves both problems described
above.

It is interesting to note that when plot size is constant over
all plots, the ROM reduces to the MOR. If xi = x, eq. 1
b e c o m e s

n n n

CYi  CYi  CYi  y
i= l i= liROM  = $L  = - = ~ = -

pi ix xn  x

i=l i= l

and, since SYX = 0 and S,’ = 0, eq. 2 becomes

V(i&,,) = &SF + iEs,2  - 2kS,) = +“:
n

When the constant xi = x is substituted into the MOR estima-
tor, we obtain

ixi

kMOR - i=l  x  -I,,u
n X X

a n d

which are both equivalent to the ROM.

Weighted mean of ratios (WMOR)
When the MOR estimator is weighted by plot size, it re-

duces to the ROM whether plot size is constant or not. This
is easy to see since

t+  40-
5

t 30 -
t

20 - .
.

.

.I
i
:. :. :

l :

. :

. :

1 0  - . .
.

‘: ... :.
0 I t I I I

0.01 0.02 0 . 0 3 0 . 0 4 0.05 0 . 0 6 0 . 0 7

Plot size

iWROM  = i

iYi
xi Yi = i ,Yi _ i;l  _ 12,,,

i=l ixi ‘i i=l CXi  CXi
i= l i= l i= l

However, treating the weight as a constant when deriving
the variance is incorrect since it does not include this addi-
tional source of variation. The ROM properly handles this in
its variance estimator.

The regression estimator
The regression estimator is appropriate when the relation-

ship between yi and Xi is linear (not necessarily through the
origin) and the variance of yi is homogeneous (a constant)
across all xk Inspection of Table 2 indicates that this as-
sumption does not hold up for the mapped design.

Nonclassical variance approximations
As opposed to the classical approaches described above,

nonclassical variance approximations such as bootstrapping
might be applied as an alternative method to estimate the
variance of any of the estimators described above, including
ROM. However, the benefits of choosing such a method
are unclear and somewhat philosophical. In essence, the
mapped-plot design is a two-stage sampling design where
the plots are the primary sampling units and the subplots and
microplots are the secondary sampling units. Within each
primary sampling unit, the unequal-sized secondary sam-
pling units consist of elements defined as either trees when
tree-level estimates are derived or hectares when per-hectare
estimates are derived. Since ROM estimators are appropriate
for cluster sampling, we preferred a simpler traditional ap-
proach over nonclassical methodology.
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Conclusions
High percentages of plots with multiple conditions show

that the forest resource is highly fragmented across the U.S.,
confirming that the extra complexity incurred with the
mapped-plot design is not spent on isolated anomalies. Of
the numerous estimators that could be applied to this design,
ROM appears qualified for the best linear unbiased estima-
tor for inventory attributes involving relationships between
trees and plot size. ROM also has several practical advan-
tages over alternative methods. Occasionally a situation
might be encountered where ROM is inferior to another esti-
mator, but with large-scale inventories it is more practical
(in terms of consistency, error reduction, and ease of pro-
cessing) to utilize the single estimator that is usually the
best, and forego the minor improvement that would be
gained in a few isolated cases.
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